ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существуют ли такие две функции f и g, принимающие только целые значения, что для любого целого x выполнены соотношения: Существует ли такая последовательность натуральных чисел, чтобы любое натуральное число 1, 2, 3, ... можно было представить единственным способом в виде разности двух чисел этой последовательности? а) Докажите, что при переходе от невыпуклого
многоугольника к его выпуклой оболочке периметр уменьшается.
(Выпуклой оболочкой многоугольника называют наименьший выпуклый
многоугольник, его содержащий.)
Натуральное число n разрешается заменить на число ab, если a + b = n и числа a и b натуральные. В комнате у Папы Карло на каждой стене висят часы, причём они все показывают неверное время: первые часы ошибаются на 2 минуты, вторые – на 3 минуты, третьи – на 4 минуты и четвёртые – на 5 минут. Однажды Папа Карло, выходя на улицу, решил узнать точное время и увидел такие показания часов: 14:54, 14:57, 15:02 и 15:03. Помогите Папе Карло определить точное время. Докажите, что в любом треугольнике сумма медиан
больше 3/4 периметра, но меньше периметра.
Имеется много кубиков одинакового размера, раскрашенных в шесть цветов. При этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с помощью таких операций добиться того, что все кубики будут смотреть вверх гранями одного и того же цвета? |
Задача 97933
УсловиеИмеется много кубиков одинакового размера, раскрашенных в шесть цветов. При этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с помощью таких операций добиться того, что все кубики будут смотреть вверх гранями одного и того же цвета? Решение 1Пусть φ – поворот на 90° некоторой строки, ψ – некоторого столбца. Коммутаторы φψφ–1ψ–1 и ψφψ–1φ–1 поворачивают только кубик, лежащий в их пересечении, возвращая все остальные кубики в исходное положение. Теперь ясно, как каждый кубик поворачивать произвольно, независимо от остальных. Решение 2 Пусть первые m строк и первые n кубиков (m+1)-й строки уже повёрнуты чёрной гранью вверх. Покажем, как повернуть (n+1)-й кубик A этой строки, не испортив предыдущих "достижений". ОтветВсегда. Замечания5 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке