ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

По двум пересекающимся прямым с постоянными, но не равными скоростями движутся точки A и B.
Докажите, что существует такая точка P, что в любой момент времени  AP : BP = k,  где k – отношение скоростей.

Вниз   Решение


На шахматном турнире для 12 участников каждый сыграл ровно по одной партии с каждым из остальных. За выигрыш давали 1 очко, за ничью – ½, за проигрыш – 0. Вася проиграл только одну партию, но занял последнее место, набрав меньше всех очков. Петя занял первое место, набрав больше всех очков. На сколько очков Вася отстал от Пети?

Вверх   Решение

Задача 98553
Темы:    [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
Сложность: 4
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.


Решение

  Пусть первое число  A1 = a1...am,  а разность прогрессии  D = d1...dk.
  Рассмотрим число n, гораздо большее чем m и k. Положим  i = 1 + 10n.  Тогда в i-м члене     подчёркнуто число     Но это можно сделать (так как  a1 ≠ 0)  только в случае, когда  a1 = 1,  а D оканчивается на  

    "Расположить" в этом числе число     можно только если  k – m = 0.  Следовательно,  D = 10m–1.

Замечания

7 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2001/2002
Номер 23
вариант
Вариант осенний тур, основной вариант, 10-11 класс
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .