ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Охитин С.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 54644

Темы:   [ Построения (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Автор: Охитин С.

Дан треугольник ABC. Найдите на стороне AC такую точку D, чтобы периметр треугольника ABD равнялся длине стороны BC.

Прислать комментарий     Решение

Задача 55137

Темы:   [ Замечательное свойство трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4+
Классы: 8,9

Автор: Охитин С.

Известно, что четыре синих треугольника на рисунке 1 равновелики.

а) Докажите что три красных четырёхугольника на этом рисунке также равновелики.

б) Найдите площадь одного четырёхугольника, если площадь одного синего треугольника равна 1.

Прислать комментарий     Решение


Задача 73617

Темы:   [ Индукция (прочее) ]
[ Принцип крайнего ]
Сложность: 4+
Классы: 7,8,9

Автор: Охитин С.

На кольцевой автомобильной дороге стоят несколько одинаковых автомашин. Если бы весь бензин, имеющийся в этих автомашинах, слили в одну, то эта машина смогла бы проехать по всей кольцевой дороге и вернуться на прежнее место. Докажите, что хотя бы одна из этих машин может объехать всё кольцо, забирая по пути бензин у остальных машин.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .