ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Трепалин А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 109193

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 8,9

Пусть   = ,  где    – несократимая дробь. Докажите, что существует бесконечно много натуральных n, при которых выполнено неравенство  bn+1 < bn.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .