ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 302]      



Задача 103826

Темы:   [ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2-
Классы: 6

Расположите в кружочках (вершинах правильного десятиугольника) числа от 1 до 10 так, чтобы для любых двух соседних чисел их сумма была равна сумме двух чисел, им противоположных (симметричных относительно центра окружности).

Прислать комментарий     Решение


Задача 88092

Темы:   [ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 2
Классы: 6,7,8

Простые числа имеют только два различных делителя – единицу и само это число. А какие числа имеют только три различных делителя?

Прислать комментарий     Решение

Задача 88262

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7

Можно ли выложить в ряд все 28 косточек домино согласно правилам игры так, чтобы на одном конце ряда оказалось 5, а на другом 6 очков?
Прислать комментарий     Решение


Задача 35123

Темы:   [ Разбиения на пары и группы; биекции ]
[ Неравенство треугольника (прочее) ]
Сложность: 2+
Классы: 8,9

Рассматриваются всевозможные треугольники, имеющие целочисленные стороны и периметр которых равен 2000, а также всевозможные треугольники, имеющие целочисленные стороны и периметр которых равен 2003. Каких треугольников больше?
Прислать комментарий     Решение


Задача 35411

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 8,9,10

На окружности отмечено 2000 синих и одна красная точка. Рассматриваются всевозможные выпуклые многоугольники с вершинами в этих точках. Каких многоугольников больше - тех, у которых есть красная вершина, или тех, у которых нет?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .