ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 314]      



Задача 103826

Темы:   [ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2-
Классы: 6

Расположите в кружочках (вершинах правильного десятиугольника) числа от 1 до 10 так, чтобы для любых двух соседних чисел их сумма была равна сумме двух чисел, им противоположных (симметричных относительно центра окружности).

Прислать комментарий     Решение


Задача 88092

Темы:   [ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 2
Классы: 6,7,8

Простые числа имеют только два различных делителя – единицу и само это число. А какие числа имеют только три различных делителя?

Прислать комментарий     Решение

Задача 88262

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7

Можно ли выложить в ряд все 28 косточек домино согласно правилам игры так, чтобы на одном конце ряда оказалось 5, а на другом 6 очков?

Прислать комментарий     Решение

Задача 34899

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 2+

Докажите, что число разложений натурального числа n в сумму различных натуральных слагаемых равно числу разложений числа n в сумму нечетных (возможно, повторяющихся) натуральных слагаемых.
Прислать комментарий     Решение


Задача 32036

Темы:   [ Разбиения на пары и группы; биекции ]
[ Куб ]
[ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 6,7,8

Петя написал на гранях кубика натуральные числа от 1 до 6. Вася кубика не видел, но утверждает, что

а) у этого кубика есть две соседние грани, на которых написаны соседние числа;

б) таких пар соседних граней у кубика не меньше двух.

Прав ли он в обоих случаях? Почему?

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 314]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .