Страница: 1 [Всего задач: 5]
Задача
67062
(#1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Два человека шли по прямой дорожке навстречу друг другу с постоянными скоростями, но один – медленно, другой – быстро. Одновременно каждый отпустил вперёд от себя собаку (собаки бежали с одной и той же постоянной скоростью). Каждая собака добежала до другого хозяина и возвратилась к своему. Чья собака вернулась раньше – быстрого хозяина или медленного?
Задача
67063
(#2)
|
|
Сложность: 3 Классы: 7,8,9,10
|
Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее.
Верно ли, что с какого-то момента все получающиеся у Пети числа будут содержать 5 в своей десятичной записи?
Задача
67074
(#3)
|
|
Сложность: 3+ Классы: 8,9,10
|
На Поле Чудес выросло 11 золотых монет, но стало известно, что ровно четыре из них фальшивые. Все настоящие монеты весят одинаково, все фальшивые тоже, но они легче настоящих. Лиса Алиса и Буратино собрали монеты и стали их делить. Алиса собирается отдать Буратино четыре монеты, но он хочет сначала проверить, все ли они настоящие. Сможет ли он сделать это за два взвешивания на чашечных весах без гирь?
Задача
67075
(#4)
|
|
Сложность: 3+ Классы: 8,9,10
|
На диагонали $AC$ квадрата $ABCD$ взята точка $P$. Пусть $H$ – точка пересечения высот треугольника $APD$, $M$ – середина $AD$ и $N$ – середина $CD$.
Докажите, что прямые $PN$ и $MH$ взаимно перпендикулярны.
Задача
67066
(#5)
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Прямоугольник 1×3 будем называть триминошкой. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети?
Страница: 1 [Всего задач: 5]