ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Дроби
>>
Десятичные дроби
>>
Периодические и непериодические дроби
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число. Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35]
Представьте следующие рациональные числа в виде десятичных дробей:
Докажите, что дроби 1000/2001 и 1001/2001 имеют равную длину периодов.
Найдите цифры a и b, для которых = 0,bbbbb...
Найдите возможные значения знаменателя обычной дроби вида 1/m, которая представляется чисто периодической десятичной дробью с двумя цифрами в периоде.
В десятичной записи числа 1/7 зачеркнули 2013-ю цифру после запятой (а другие цифры не меняли).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 35] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|