ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 275]      



Задача 30467

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3+
Классы: 6,7,8

Игра начинается с числа 0. За ход разрешается прибавить к имеющемуся числу любое натуральное число от 1 до 9. Выигрывает тот, кто получит число 100.

Прислать комментарий     Решение


Задача 35053

Темы:   [ Теория игр (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10,11

2n конфет разложены по n коробкам. Девочка и мальчик по очереди берут по одной конфете, первой выбирает девочка.
Докажите, что мальчик может выбирать конфеты так, чтобы две последние конфеты оказались из одной коробки.

Прислать комментарий     Решение

Задача 35335

Тема:   [ Симметричная стратегия ]
Сложность: 3+
Классы: 7,8,9

Двое мальчиков играют в такую игру: они по очереди ставят ладьи на шахматную доску. Выигрывает тот, при ходе которого все клетки доски оказываются битыми поставленными фигурами. Кто выиграет, если оба стараются играть наилучшим образом?

Прислать комментарий     Решение

Задача 64315

Тема:   [ Теория игр (прочее) ]
Сложность: 3+
Классы: 6,7

Почтальон Печкин не хотел отдавать посылку. Тогда Матроскин предложил ему сыграть в следующую игру: каждым ходом Печкин пишет в строку слева направо буквы, произвольно чередуя М и П, пока в строке не будет всего 11 букв. Матроскин после каждого его хода, если хочет, меняет местами любые две буквы. Если в итоге окажется, что записанное слово является палиндромом (то есть одинаково читается слева направо и справо налево), то Печкин отдаёт посылку. Сможет ли Матроскин играть так, чтобы обязательно получить посылку?

Прислать комментарий     Решение

Задача 64519

Темы:   [ Теория игр (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Соображения непрерывности ]
Сложность: 3+
Классы: 8,9,10

Вася и Петя играют в следующую игру. На доске написаны два числа: 1/2009 и 1/2008. На каждом ходу Вася называет любое число x, а Петя увеличивает одно из чисел на доске (какое захочет) на x. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .