ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 65345

Темы:   [ Теория вероятностей (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Точка выходит из начала координат на прямой и делает a шагов на единицу вправо, b шагов на единицу влево в каком-то порядке, причём  a > b.  Размахом блуждания точки назовём разность между наибольшей и наименьшей координатами точки за всё время блуждания.
  а) Найдите наибольший возможный размах блуждания.
  б) Найдите наименьший возможный размах.
  в) Сколько существует различных последовательностей движения точки, при которых размах блуждания будет наибольшим возможным?

Прислать комментарий     Решение

Задача 35352

Тема:   [ Теория вероятностей (прочее) ]
Сложность: 3+
Классы: 9,10,11

При посадке в самолет выстроилась очередь из n пассажиров, у каждого из которых имеется билет на одно из n мест. Первой в очереди стоит сумасшедшая старушка. Она вбегает в салон и садится на случайное место (возможно, и на свое). Далее пассажиры по очереди занимают свои места, а в случае, если свое место уже занято, садятся случайным образом на одно из свободных мест. Какова вероятность того, что последний пассажир займет свое место?
Прислать комментарий     Решение


Задача 35161

Темы:   [ Теория вероятностей (прочее) ]
[ Средние величины ]
Сложность: 4
Классы: 9,10,11

В каждую жвачку вложен один из n вкладышей, причём каждый вкладыш встречается с вероятностью 1/n.
Сколько в среднем надо купить жвачек, чтобы собрать полную коллекцию вкладышей?

Прислать комментарий     Решение

Задача 35178

Темы:   [ Парадоксы ]
[ Теория вероятностей (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Каждый вечер Иван Таранов приходит в случайное время на автобусную остановку. На этой остановке останавливаются два маршрута - на одном из них Иван может ехать к себе домой, а на другом - в гости к другу Козявкину. Иван ждет первого автобуса и в зависимости от того, какой автобус подошел, он едет либо домой, либо к другу. Через некоторое время Иван заметил, что в гостях у Козявкина он оказывается при этом примерно в два раза чаще, чем дома. На основе этого Иван делает вывод, что один из автобусов ходит в два раза чаще другого. Прав ли он? Могут ли при выполнении условия задачи автобусы ходить с одинаковой частотой? (Предполагается, что автобусы ходят не случайным образом, а по некоторому расписанию.)
Прислать комментарий     Решение


Задача 35710

Темы:   [ Теория алгоритмов (прочее) ]
[ Теория вероятностей (прочее) ]
Сложность: 3
Классы: 7,8

Трое друзей решают жребием, кто идет за соком. У них есть одна монета. Как им устроить жребий, чтобы все имели равные шансы бежать?
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .