ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 109792
Темы:    [ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Неравенства. Метод интервалов ]
Сложность: 4
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  


Решение 1

Заметим, что     (мы использовали неравенство     между средним арифметическим и средним гармоническим для положительных x, y). Осталось сложить три аналогичных неравенства.


Решение 2

  Не умаляя общности, можно считать, что  a ≥ b ≥ c,  тогда  1 – c² ≥ 1 – b² ≥ 1 – a²  и, следовательно,  

  Заметим, что     Таким образом, нужно доказать неравенство  
  Поскольку сумма числителей равна 0, неравенство будет доказано, если мы заменим знаменатели на равные таким образом, что каждая дробь при этом не увеличится. Если  a ≥ b ≥ ⅓ ≥ c,  то заменим все знаменатели на  1 – c²,  в результате отрицательное слагаемое не изменится, а положительные не увеличатся. Если  a ≥ ⅓ b ≥ c,  то заменим все знаменатели на  1 – b²,  тогда положительное слагаемое и одно из отрицательных только уменьшатся, а второе отрицательное слагаемое останется неизменным.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2003
Этап
Вариант 5
Класс
Класс 9
задача
Номер 03.5.9.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .