ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 57332
Условиеа) Докажите, что при переходе от невыпуклого
многоугольника к его выпуклой оболочке периметр уменьшается.
(Выпуклой оболочкой многоугольника называют наименьший выпуклый
многоугольник, его содержащий.)
Решениеа) При переходе от невыпуклого многоугольника к его
выпуклой оболочке некоторые ломаные, образованные сторонами,
заменяются прямолинейными отрезками (рис.). Остается заметить,
что длина ломаной больше длины отрезка с теми же концами.
б) Построим на сторонах внутреннего многоугольника полуполосы, обращенные наружу; параллельные края полуполос перпендикулярны соответствующей стороне многоугольника (рис.). Обозначим через P ту часть периметра внешнего многоугольника, которая находится внутри этих полуполос. Тогда периметр внутреннего многоугольника не превосходит P, а внешнего больше P. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке