ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 65852
Темы:    [ Многоугольники (прочее) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Дан выпуклый 100-угольник. Докажите, что можно отметить такие 50 точек внутри этого многоугольника, что каждая вершина будет лежать на прямой, проходящей через какие-то две из отмеченных точек.


Решение

Проведём в 100-угольнике A1...A100 пятьдесят диагоналей A1A4, A3A6, ..., A99A2. Каждая из них пересекает только две соседние, причём в разных точках (эти две соседние диагонали между собой не пересекаются). Полученные 50 точек пересечения и будут искомыми.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 27
Дата 2005/2006
вариант
Вариант весенний тур, основной вариант, 10-11 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .