Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 118]
|
|
Сложность: 4- Классы: 8,9,10
|
Из промежутка (22n, 23n) выбрано 22n–1 + 1 нечётное число.
Докажите, что среди выбранных чисел найдутся два, квадрат каждого из которых не делится на другое.
|
|
Сложность: 4- Классы: 8,9,10
|
Сумма чисел a1, a2, a3, каждое из которых больше единицы, равна S, причём
для любого i = 1, 2, 3.
Докажите, что
|
|
Сложность: 4- Классы: 7,8,9,10
|
Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.
|
|
Сложность: 4- Классы: 9,10,11
|
Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼.
|
|
Сложность: 4- Классы: 7,8,9,10
|
Некоторые натуральные числа отмечены. Известно, что на каждом отрезке числовой прямой длины 1999 есть отмеченное число.
Докажите, что найдётся пара отмеченных чисел, одно из которых делится на другое.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 118]