Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 194]
|
|
|
Сложность: 4- Классы: 8,9,10
|
a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны.
б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа?
Дана клетчатая полоса 1×N. Двое играют в следующую игру. На очередном ходу первый игрок ставит в одну из свободных клеток крестик, а второй – нолик. Не разрешается ставить в соседние клетки два крестика или два нолика. Проигрывает тот, кто не может сделать ход.
Кто из игроков может всегда выиграть (как бы ни играл его соперник)?
|
|
|
Сложность: 4- Классы: 8,9,10
|
а) Сколько осей симметрии может иметь клетчатый многоугольник, то есть многоугольник, стороны которого лежат на линиях листа бумаги в клетку?
б) Сколько осей симметрии может иметь клетчатый многогранник, то есть многогранник, составленный из одинаковых кубиков, примыкающих друг к другу гранями?
Каждый из двух правильных многоугольников P и Q разрезали прямой на две части. Одну из частей P и одну из частей Q сложили друг с другом по линии разреза. Может ли получиться правильный многоугольник, не равный ни одному из исходных, и если да, то сколько у него может быть сторон?
|
|
|
Сложность: 4- Классы: 8,9,10
|
Дано n палочек. Из любых трёх можно сложить тупоугольный треугольник. Каково наибольшее возможное значение n?
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 194]