ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все авторы
>>
Френкин Б.Р.
Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Отрезок BD является медианой равнобедренного треугольника ABC ( AB= BC) . Окружность радиуса 4 проходит через точки B , A , D и пересекает сторону BC в точке E так, что BE:BC=7:8 . Найдите периметр треугольника ABC . Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 181]
Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что A'K = B'K.
В турнире участвуют 100 борцов, все разной силы. Более сильный всегда побеждает более слабого. Борцы разбились на пары и провели поединки. Затем разбились на пары по-другому и снова провели поединки. Призы получили те, кто выиграл оба поединка. Каково наименьшее возможное количество призёров?
В треугольнике ABC проведены высота AH, биссектриса BL и медиана CM. Известно, что в треугольнике HLM прямая AH является высотой, а BL – биссектрисой. Докажите, что CM является в этом треугольнике медианой.
Для каждой вершины треугольника ABC нашли угол между высотой и биссектрисой, проведёнными из этой вершины. Оказалось, что эти углы в вершинах A и B равны друг другу и меньше, чем угол в вершине C. Чему равен угол C треугольника?
Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 181] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|