ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 323]      



Задача 116959

Темы:   [ Разрезания (прочее) ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6,7

Малый и Большой острова имеют прямоугольную форму и разделены на прямоугольные графства. В каждом графстве проложена дорога по одной из диагоналей. На каждом острове эти дороги образуют замкнутый путь, который ни через какую точку не проходит дважды. Вот как устроен Малый остров, где всего шесть графств (см. рис.).

Нарисуйте, как может быть устроен Большой остров, если на нём нечётное число графств. Сколько графств у вас получилось?

Прислать комментарий     Решение

Задача 116965

Темы:   [ Текстовые задачи (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 6,7,8

Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов.

Прислать комментарий     Решение

Задача 116970

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3+
Классы: 5,6,7

Пусть на плоскости отмечено несколько точек. Назовём прямую нечестной, если она проходит ровно через три отмеченные точки и по разные стороны от неё отмеченных точек не поровну. Можно ли отметить 7 точек и провести для них 5 нечестных прямых?

Прислать комментарий     Решение

Задача 67478

Тема:   [ Теория игр (прочее) ]
Сложность: 3+
Классы: 7,8,9,10,11

Мама и сын играют. Сначала сын режет головку сыра 300 г на 4 куска. Затем мама распределяет 280 г масла на 2 тарелки. Наконец, сын раскладывает куски сыра на те же тарелки. Он выиграет, если на каждой тарелке сыра будет не меньше, чем масла (иначе выиграет мама). Кто из них может победить, как бы ни действовал другой?
Прислать комментарий     Решение


Задача 66378

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3+
Классы: 5,6,7

Шесть математиков пошли на рыбалку. Вместе они наловили 100 рыб, причём все поймали разное количество. После рыбалки они заметили, что любой из них мог бы раздать всех своих рыб другим рыбакам так, чтобы у остальных пятерых стало поровну рыб. Докажите, что один рыбак может уйти домой со своим уловом и при этом снова каждый оставшийся сможет раздать всех своих рыб другим рыбакам так, чтобы у них получилось поровну.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 323]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .