ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 316]      



Задача 66903

Темы:   [ Теория алгоритмов (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9,10

В центре каждой клетки клетчатого прямоугольника $M$ расположена точечная лампочка, изначально все они погашены. За ход разрешается провести любую прямую, не задевающую лампочек, и зажечь все лампочки по какую-то одну сторону от этой прямой, если все они погашены. Каждым ходом должна зажигаться хотя бы одна лампочка. Требуется зажечь все лампочки, сделав как можно больше ходов. Какое максимальное число ходов удастся сделать, если

а) $M$ – квадрат $21\times21$;

б) $M$ – прямоугольник $20\times21$?

Прислать комментарий     Решение

Задача 66990

Темы:   [ Системы линейных уравнений ]
[ Инварианты и полуинварианты (прочее) ]
Сложность: 3+
Классы: 6,7,8

Шеренга солдат-новобранцев стояла лицом к сержанту. По команде «налево» некоторые повернулись налево, остальные – направо. Оказалось, что в затылок соседу смотрит в шесть раз больше солдат, чем в лицо. Затем по команде «кругом» все развернулись в противоположную сторону. Теперь в затылок соседу стали смотреть в семь раз больше солдат, чем в лицо. Сколько солдат в шеренге?
Прислать комментарий     Решение


Задача 107810

Темы:   [ Геометрия на клетчатой бумаге ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3+
Классы: 8,9,10

В клетчатом квадрате 10×10 отмечены центры всех единичных квадратиков (всего 100 точек). Какое наименьшее число прямых, не параллельных сторонам квадрата,

нужно провести, чтобы вычеркнуть все отмеченные точки?
Прислать комментарий     Решение


Задача 115383

Темы:   [ Наглядная геометрия в пространстве ]
[ Свойства разверток ]
[ Прямоугольные параллелепипеды ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8

а) Поросенок Наф-Наф придумал, как сложить параллелепипед из одинаковых кубиков и оклеить его тремя квадратами без щелей и наложений. Сделайте это и вы.
б) А может ли Наф-Наф добиться, чтобы при этом каждые два квадрата граничили друг с другом?
Прислать комментарий     Решение


Задача 66522

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8

Миша сложил из кубиков куб 3×3×3. Затем некоторые соседние по грани кубики он склеил друг с другом. Получилась цельная конструкция из 16 кубиков, остальные кубики Миша убрал. Обмакнув конструкцию в чернила, он поочерёдно приложил её к бумаге тремя гранями. Вышло слово КОТ (см. рис.). Что получится, если отпечатать грань, противоположную букве "О"?

Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .