Страница: 1
2 >> [Всего задач: 6]
На столе лежат две кучки камней: в
первой кучке 10 камней, а во
второй - 15. За ход
разрешается разделить любую кучку
на две меньшие. Проигрывает тот, кто
не сможет делать ход. Может ли
выиграть второй игрок?
|
|
Сложность: 4- Классы: 9,10,11
|
Квадратный трёхчлен f(x) разрешается заменить на один из
трёхчленов
или
Можно ли с помощью таких операций из квадратного трёхчлена x² + 4x + 3 получить трёхчлен x² + 10x + 9?
|
|
Сложность: 3+ Классы: 6,7,8
|
Шеренга солдат-новобранцев стояла лицом к сержанту. По команде «налево» некоторые повернулись налево, остальные – направо. Оказалось, что в затылок соседу смотрит в шесть раз больше солдат, чем в лицо. Затем по команде «кругом» все развернулись в противоположную сторону. Теперь в затылок соседу стали смотреть в семь раз больше солдат, чем в лицо. Сколько солдат в шеренге?
|
|
Сложность: 4 Классы: 9,10,11
|
На доске написано n натуральных чисел. За одну операцию вместо двух чисел, не делящих друг друга, можно написать их наибольший общий делитель и их наименьшее общее кратное.
а) Докажите, что можно провести только конечное число операций.
б) Финальный результат независимо от порядка действий будет одним
и тем же. Например:
(4, 6, 9) → (2, 12, 9) → (2, 3, 36) → (1, 6, 36),
(4, 6, 9) → (4, 3, 18) → (1, 12, 18) → (1, 6, 36).
|
|
Сложность: 4 Классы: 8,9,10,11
|
На острове живут рыцари, лжецы и подпевалы; каждый знает про всех, кто из них кто. В ряд построили всех 2018 жителей острова и попросили каждого ответить «Да» или «Нет» на вопрос: «На острове рыцарей больше, чем лжецов?». Жители отвечали по очереди и так, что их слышали остальные. Рыцари отвечали правду, лжецы лгали. Каждый подпевала отвечал так же, как большинство ответивших до него, а если ответов «Да» и «Нет» было поровну, давал любой из этих ответов. Оказалось, что ответов «Да» было ровно 1009. Какое наибольшее число подпевал могло быть среди жителей острова?
Страница: 1
2 >> [Всего задач: 6]