ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 316]      



Задача 98560

Темы:   [ Взвешивания ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9

а) Есть 128 монет двух различных весов, монет каждого веса поровну. Как на чашечных весах без гирь гарантированно найти две монеты разного веса не более чем за семь взвешиваний?
б) Есть восемь монет двух различных весов, монет каждого веса поровну. Как на чашечных весах без гирь гарантированно найти две монеты разного веса за два взвешивания?

Прислать комментарий     Решение

Задача 98563

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4-
Классы: 9,10,11

Есть шесть кусков сыра разного веса. Известно, что можно разложить сыр на две кучки по три куска так, чтобы кучки весили поровну.
Как можно сделать это за два взвешивания на чашечных весах без гирь, если про любые два куска на глаз видно, какой весит больше?

Прислать комментарий     Решение

Задача 98564

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматные доски и шахматные фигуры ]
[ Правило произведения ]
Сложность: 4-
Классы: 9,10,11

Сколькими способами можно расставить числа от 1 до 100 в прямоугольнике 2×50 так, чтобы каждые два числа, различающиеся на 1, всегда попадали бы в клетки с общей стороной?

Прислать комментарий     Решение

Задача 98584

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства параллелограмма ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

Дан некоторый угол и точка A внутри него. Можно ли провести через точку A три прямые (не проходящие через вершину угла) так, чтобы на каждой из сторон угла одна из точек пересечения этих прямых со стороной лежала посередине между двумя другими точками пересечения прямых с этой же стороной?

Прислать комментарий     Решение

Задача 98589

Темы:   [ Последовательности (прочее) ]
[ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10,11

В бесконечной последовательности натуральных чисел каждое следующее число получается прибавлением к предыдущему одной из его ненулевых цифр.
Докажите, что в этой последовательности найдётся чётное число.

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .