Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 319]      



Задача 115391

Темы:   [ Теория алгоритмов (прочее) ]
[ Математическая логика (прочее) ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10,11

В ряд слева направо лежит 31 кошелёк, в каждом по 100 монет. Из одного кошелька часть монет переложили: по одной монете в каждый из кошельков справа от него. За один вопрос можно узнать суммарное число монет в любом наборе кошельков. За какое наименьшее число вопросов можно гарантированно вычислить "облегчённый" кошелёк?

Прислать комментарий     Решение

Задача 115839

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9,10

Барон Мюнхгаузен говорит, что у него есть многозначное число-палиндром (оно читается одинаково слева направо и справа налево). Написав его на бумажной ленте, барон сделал несколько разрезов между цифрами и получил на кусочках ленты числа 1, 2, ..., N в некотором порядке (каждое – ровно по разу). Не хвастает ли барон?

Прислать комментарий     Решение

Задача 115984

Тема:   [ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Числа 1, 2, ..., 100 стоят по кругу в некотором порядке.
Может ли случиться, что у любых двух соседних чисел модуль разности не меньше 30, но не больше 50?

Прислать комментарий     Решение

Задача 116064

Тема:   [ Кооперативные алгоритмы ]
Сложность: 4-
Классы: 6,7,8

Дракон запер в пещере шестерых гномов и сказал: "У меня есть семь колпаков семи цветов радуги. Завтра утром я завяжу вам глаза и надену на каждого по колпаку, а один колпак спрячу. Затем сниму повязки, и вы сможете увидеть колпаки на головах у других, но общаться я вам уже не позволю. После этого каждый втайне от других скажет мне цвет спрятанного колпака. Если угадают хотя бы трое, всех отпущу. Если меньше – съем на обед". Как гномам заранее договориться действовать, чтобы спастись?

Прислать комментарий     Решение

Задача 116163

Тема:   [ Неравенства для площади треугольника ]
Сложность: 4-
Классы: 10,11

Докажите, что любой жесткий плоский треугольник T площади меньше 4 можно просунуть сквозь треугольную дырку Q площади 3.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 319]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .