Страница: 1 [Всего задач: 3]
Около остроугольного треугольника ABC описана окружность с центром O. Перпендикуляры, опущенные из точки O на стороны треугольника, продолжены до пересечения с окружностью в точках K, M и P. Докажите, что где Q – центр вписанной окружности треугольника ABC.
|
|
Сложность: 5- Классы: 9,10,11
|
Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.
|
|
Сложность: 5- Классы: 9,10,11
|
Рассматривается последовательность слов, состоящих из букв "A" и "B".
Первое слово в последовательности – "A", k-е слово получается из (k–1)-го с помощью следующей операции: каждое "A" заменяется на "AAB", каждое "B" – на "A". Легко видеть, что каждое слово является началом следующего, тем самым получается бесконечная последовательность букв: AABAABAAABAABAAAB...
а) На каком месте в этой последовательности встретится 1000-я буква "A"?
б) Докажите, что эта последовательность – непериодическая.
Страница: 1 [Всего задач: 3]