Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 49]
|
|
Сложность: 3+ Классы: 9,10,11
|
Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)?
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли выпуклый многогранник, у которого рёбер столько же, сколько диагоналей? (Диагональю многогранника называется отрезок, соединяющий две вершины, не лежащие в одной грани.)
|
|
Сложность: 3+ Классы: 8,9,10
|
Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Докажите, что можно выбрать по одному корню каждого из них так, чтобы их сумма равнялась сумме оставшихся корней.
|
|
Сложность: 3+ Классы: 8,9,10
|
У квадратного уравнения x² + px + q = 0
коэффициенты p и q увеличили на единицу. Эту операцию повторили
четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти
полученных уравнений корни были бы целыми числами.
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли тетраэдр, все грани которого — равные
прямоугольные треугольники?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 49]