ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На координатной плоскости xOy построена парабола y = x². Затем начало координат и оси стёрли. |
Страница: 1 2 >> [Всего задач: 7]
Положительные числа a, b, c таковы, что a² + b² – ab = c². Докажите, что (a – c)(b – c) ≤ 0.
Докажите, что число
В таблице n×n разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)
Известно, что уравнение x4 + ax³ + 2x² + bx + 1 = 0 имеет действительный корень. Докажите неравенство a² + b² ≥ 8.
На координатной плоскости xOy построена парабола y = x². Затем начало координат и оси стёрли.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке