ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Дужин С.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 110048

Темы:   [ Степень вершины ]
[ Раскраски ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 7,8,9

Автор: Дужин С.В.

В некотором городе на каждом перекрёстке сходятся ровно три улицы. Улицы раскрашены в три цвета так, что на каждом перекрёстке сходятся улицы трёх разных цветов. Из города выходят три дороги. Докажите, что они имеют разные цвета.

Прислать комментарий     Решение

Задача 109883

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Уравнения в целых числах ]
Сложность: 4+
Классы: 10,11

Автор: Дужин С.В.

Найдите все такие натуральные n, что при некоторых различных натуральных a, b, c и d среди чисел

есть по крайней мере два числа, равных n.

Прислать комментарий     Решение

Задача 109870

Темы:   [ Степень вершины ]
[ Перестройки ]
[ Раскраски ]
[ Инварианты ]
Сложность: 5+
Классы: 9,10,11

Автор: Дужин С.В.

Улицы города Дужинска – простые ломаные, не пересекающиеся между собой во внутренних точках. Каждая улица соединяет два перекрёстка и покрашена в один из трёх цветов: белый, красный или синий. На каждом перекрёстке сходятся ровно три улицы, по одной каждого цвета. Перекрёсток называется положительным, если при его обходе против часовой стрелки цвета улиц идут в следующем порядке: белый, синий, красный, и отрицательным в противном случае. Докажите, что разность между числом положительных и числом отрицательных перекрёстков кратна 4.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .