Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Ерошкин Ю.Г.

Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

  а) Квадрат разбит на прямоугольники. Цепочкой называется такое подмножество K множества этих прямоугольников, что существует сторона S квадрата, целиком закрытая проекциями прямоугольников из K, но при этом ни в какую точку S не проектируются внутренние точки двух прямоугольников из K (мы относим к прямоугольнику и его стороны). Доказать, что любые два прямоугольника разбиения входят в некоторую цепочку.

  б) Аналогичная задача для куба, разбитого на прямоугольные параллелепипеды (в определении цепочки нужно заменить сторону на ребро).

Вниз   Решение


Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.

ВверхВниз   Решение


Последовательность натуральных чисел  a1 < a2 < a3 < ... < an < ...  такова, что каждое натуральное число либо входит в последовательность, либо представимо в виде суммы двух членов последовательности, быть может, одинаковых. Докажите, что  ann²  для любого  n = 1, 2, 3, ...

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 73697

Темы:   [ Принцип Дирихле (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10

Последовательность натуральных чисел  a1 < a2 < a3 < ... < an < ...  такова, что каждое натуральное число либо входит в последовательность, либо представимо в виде суммы двух членов последовательности, быть может, одинаковых. Докажите, что  ann²  для любого  n = 1, 2, 3, ...

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .