ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шноль Д.Э.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44]      



Задача 64683

Темы:   [ Степень вершины ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7,8

Автор: Шноль Д.Э.

Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании?

Прислать комментарий     Решение

Задача 65439

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 5,6,7

Автор: Шноль Д.Э.

Мария Ивановна покупает 16 шариков для Последнего звонка. В магазине есть шарики трёх цветов: синего, красного и зелёного. Сколько существует вариантов различных покупок 16 шариков, если Мария Ивановна хочет, чтобы шарики каждого цвета составляли не менее четверти от количества всех шариков?

Прислать комментарий     Решение

Задача 65441

Темы:   [ Текстовые задачи (прочее) ]
[ Количество и сумма делителей числа ]
Сложность: 3+
Классы: 5,6,7

Автор: Шноль Д.Э.

Отец говорит сыну:
– Сегодня у нас у обоих день рождения, и ты стал ровно в 2 раза моложе меня.
– Да, и это восьмой раз за мою жизнь, когда я моложе тебя в целое число раз.
Сколько лет сыну, если отец не старше 75 лет?

Прислать комментарий     Решение

Задача 65442

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 5,6,7

Автор: Шноль Д.Э.

Дан квадрат 2n×2n. Вася закрашивает в нём две любые клетки. Всегда ли Петя сможет разрезать этот квадрат на две равные части так, чтобы закрашенные клетки были в разных половинках?

Прислать комментарий     Решение

Задача 65626

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 5,6,7

Автор: Шноль Д.Э.

В классе учатся 27 человек, но на урок физкультуры пришли не все. Учитель разбил пришедших на две равные по численности команды для игры в пионербол. При этом в первой команде была половина всех пришедших мальчиков и треть всех пришедших девочек, а во второй – половина всех пришедших девочек и четверть всех пришедших мальчиков. Остальные пришедшие ребята помогали судить. Сколько помощников могло быть у судьи?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .