ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]
У подводного царя служат осьминоги с шестью, семью или восемью ногами. Те, у кого 7 ног, всегда лгут, а у кого 6 или 8 ног, всегда говорят правду. Встретились четыре осьминога. Синий сказал: "Вместе у нас 28 ног", зеленый: "Вместе у нас 27 ног", желтый: "Вместе у нас 26 ног", красный: "Вместе у нас 25 ног". У кого сколько ног?
Мальчик с папой стоят на берегу моря. Если мальчик встанет на цыпочки, его глаза будут на высоте 1 м от поверхности моря, а если сядет папе на плечи, то на высоте 2 м. Во сколько раз дальше он будет видеть во втором случае. (Найдите ответ с точностью до 0,1, радиус Земли считайте равным 6000 км.)
Биссектрисы углов трапеции образуют при пересечении четырёхугольник с перпендикулярными диагоналями.
Дан треугольник ABC и построена вневписанная окружность с центром O, касающаяся стороны BC и продолжений сторон AB и AC. Точка O1 симметрична точке O относительно прямой BC. Найдите величину угла A, если известно, что точка O1 лежит на описанной около треугольника ABC окружности.
На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке