Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Магазинов А.

Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.

Вниз   Решение


Куб разбит на прямоугольные параллелепипеды так, что для любых двух параллелепипедов их проекции на некоторую грань куба перекрываются (то есть пересекаются по фигуре ненулевой площади). Докажите, что для любых трёх параллелепипедов найдётся такая грань куба, что проекции каждых двух из них на эту грань не перекрываются.

ВверхВниз   Решение


Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

ВверхВниз   Решение


Автор: Вим Пайлс

На плоскости даны два отрезка A1B1 и A2B2, причём  A2B2/A1B1 = k < 1.  На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что  A3А2/А3А1 = А4А2/А4А1 = k.  Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что
В3В2/В3В1 = В4В2/В4В1 = k.  Найти угол между прямыми А3В3 и А4В4.

ВверхВниз   Решение


Покажите, что существует выпуклая фигура, ограниченная дугами окружностей, которую можно разрезать на несколько частей и из них сложить две выпуклые фигуры, ограниченные дугами окружностей.

ВверхВниз   Решение


У входа в пещеру стоит барабан, на нём по кругу через равные промежутки расположены N одинаковых с виду бочонков. Внутри каждого бочонка лежит селёдка – либо головой вверх, либо головой вниз, но где как – не видно (бочонки закрыты). За один ход Али-Баба выбирает любой набор бочонков (от 1 до N штук) и переворачивает их все. После этого барабан приходит во вращение, а когда останавливается, Али-Баба не может определить, какие бочонки перевёрнуты. Пещера откроется, если во время вращения барабана все N селёдок будут расположены головами в одну сторону. При каких N Али-Баба сможет открыть пещеру?

ВверхВниз   Решение


Двое игроков по очереди выставляют на доску 65×65 по одной шашке. При этом ни в одной линии (горизонтали или вертикали) не должно быть больше двух шашек. Кто не может сделать ход – проиграл. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Прямую палку длиной 2 метра распилили на N палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем N можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 65252

Темы:   [ Теория алгоритмов ]
[ Шахматная раскраска ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10,11

Поле представляет собой клетчатый квадрат 41×41, в одной из клеток которого замаскирован танк. Истребитель за один выстрел обстреливает одну клетку. Если произошло попадание, танк переползает на соседнюю по стороне клетку поля, если нет – остаётся на месте. При этом после выстрела пилот истребителя не знает, произошло ли попадание. Для уничтожения танка надо попасть в него два раза. Каким наименьшим числом выстрелов можно обойтись для того, чтобы гарантировать, что танк уничтожен?

Прислать комментарий     Решение

Задача 116547

Темы:   [ Геометрия на клетчатой бумаге ]
[ Принцип Дирихле (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4
Классы: 8,9

Прямую палку длиной 2 метра распилили на N палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем N можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?

Прислать комментарий     Решение

Задача 116648

Темы:   [ Объединение, пересечение и разность множеств ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

В Академии Наук 999 академиков. Каждая научная тема интересует ровно троих академиков, и у каждых двух академиков есть ровно одна тема, интересная им обоим. Докажите, что можно выбрать 250 тем из их общей области научных интересов так, чтобы каждый академик интересовался не более чем одной из них.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .