Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 151]
|
|
Сложность: 3 Классы: 7,8,9
|
Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.
Из любого ли натурального числа A при помощи таких операций можно получить число A + 1?
(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)
|
|
Сложность: 3 Классы: 9,10,11
|
Требуется разделить криволинейный треугольник на рисунке на 2 части одинаковой площади, проведя одну линию циркулем.
Это можно сделать, выбрав в качестве центра одну из отмеченных точек и проводя дугу через другую отмеченную точку.
Найдите способ это сделать и докажите, что он подходит.
|
|
Сложность: 3+ Классы: 8,9,10
|
На длинной скамейке сидели мальчик и девочка. К ним по одному подошли еще 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовём девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика – отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?
|
|
Сложность: 3+ Классы: 8,9,10
|
На боковых сторонах AB и AC равнобедренного треугольника ABC отметили соответственно точки K и L так, что AK = CL и ∠ALK + ∠LKB = 60°.
Докажите, что KL = BC.
Клетки таблицы 5×7 заполнены числами так, что в каждом прямоугольнике 2×3 (вертикальном или горизонтальном) сумма чисел равна нулю. Заплатив 100 рублей, можно выбрать любую клетку и узнать, какое число в ней записано. Какого наименьшего числа рублей хватит, чтобы наверняка определить сумму всех чисел таблицы?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 151]