Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 149]
|
|
Сложность: 3 Классы: 7,8,9
|
Можно ли раскрасить грани куба в три цвета так, чтобы каждый цвет присутствовал, но нельзя было увидеть одновременно грани всех трёх цветов, откуда бы мы ни взглянули на куб? (Одновременно можно увидеть только три любые грани, имеющие общую вершину.)
Внутри параллелограмма ABCD отметили точку E так, что CD = CE.
Докажите, что прямая DE перпендикулярна прямой, проходящей через середины отрезков AE и BC.
|
|
Сложность: 3 Классы: 6,7,8,9,10,11
|
У каждого из художников творческого объединения "Терпение и труд" свой рабочий график. Шестеро из них пишут по одной картине раз в два дня, ещё восемь художников – по одной картине раз в три дня, остальные не пишут картин никогда. С 22 по 26 сентября они написали в общей сложности 30 картин. Сколько картин они напишут 27 сентября?
|
|
Сложность: 3 Классы: 9,10,11
|
Первый член бесконечной арифметической прогрессии из натуральных чисел равен 1.
Докажите, что среди её членов можно найти 2015 последовательных членов геометрической прогрессии.
|
|
Сложность: 3 Классы: 7,8,9
|
Верно ли, что любое натуральное число можно умножить на одно из чисел 1, 2, 3, 4 или 5 так, чтобы результат начинался на цифру 1?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 149]