Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 149]
|
|
Сложность: 4 Классы: 9,10,11
|
В белой таблице 2016×2016 некоторые клетки окрасили чёрным. Назовём натуральное число k удачным, если k ≤ 2016, и в каждом из клетчатых квадратов со стороной k, расположенных в таблице, окрашено ровно k клеток. (Например, если все клетки чёрные, то удачным является только число 1.) Какое наибольшее количество чисел могут быть удачными?
|
|
Сложность: 4 Классы: 9,10,11
|
Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM.
Докажите, что ∠ADB = ∠CAM.
|
|
Сложность: 4 Классы: 8,9,10
|
Кузнечик умеет прыгать по полоске из n клеток на 8, 9 и 10 клеток в любую сторону. Будем называть натуральное число n пропрыгиваемым, если кузнечик может, начав с некоторой клетки, обойти всю полоску, побывав на каждой клетке ровно один раз. Найдите хотя бы одно n > 50, которое не является пропрыгиваемым.
|
|
Сложность: 4 Классы: 9,10,11
|
Петя раскрасил каждую клетку квадрата 1000×1000 в один из 10 цветов. Также он придумал такой 10-клеточный многоугольник Ф, что при любом способе положить его по границам клеток на раскрашенный квадрат, все 10 накрытых им клеток будут разного цвета. Обязательно ли Ф – прямоугольник?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Андрей Степанович каждый день выпивает столько капель валерьянки, сколько в этом месяце уже было солнечных дней (включая текущий день). Иван Петрович каждый пасмурный день выпивает количество капель валерьянки, равное номеру дня в месяце, а в солнечные дни не пьет. Докажите, что если в апреле ровно половина дней будет пасмурные, а другая половина – солнечные, то Андрей
Степанович и Иван Петрович выпьют за месяц поровну валерьянки.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 149]