Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Руденко Д.

Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шатунов Л.

Дан выпуклый четырехугольник $ABCD$. Прямая $l \parallel AC$ пересекает прямые $AD, BC, AB, CD$ в точках $X, Y, Z, T$. Описанные окружности треугольников $XYB$ и $ZTB$ вторично пересекаются в точке $R$. Докажите, что $R$ лежит на прямой $BD$.

   Решение

Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 98139

Темы:   [ Числовые таблицы и их свойства ]
[ Полуинварианты ]
[ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Автор: Иванов С.

Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число     В таблице зачеркнули n чисел таким образом, что никакие два зачёркнутых числа не находятся в одном столбце или в одной строке. Докажите, что сумма зачёркнутых чисел не меньше 1.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .