ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Токарева И.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 98552

Темы:   [ Четырехугольники (прочее) ]
[ Выпуклые многоугольники ]
[ Процессы и операции ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Примеры и контрпримеры. Конструкции ]
[ Неравенства для элементов треугольника (прочее) ]
[ Инварианты ]
Сложность: 4-
Классы: 9,10,11

Пусть F1, F2, F3, ... – последовательность выпуклых четырёхугольников, где Fk+1  (при k = 1, 2, 3, ...)  получается так: Fk разрезают по диагонали, одну из частей переворачивают и склеивают по линии разреза с другой частью. Какое наибольшее количество различных четырёхугольников может содержать эта последовательность? (Различными считаются многоугольники, которые нельзя совместить движением.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .