ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике $ABC$ точки $M$, $N$ – середины сторон $AB$, $AC$ соответственно; серединный перпендикуляр к биссектрисе $AL$ пересекает биссектрисы углов $B$ и $C$ в точках $P$, $Q$ соответственно. Докажите, что прямые $PM$ и $QN$ пересекаются на касательной к описанной окружности треугольника $ABC$ в точке $A$. |
Страница: 1 [Всего задач: 2]
Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что AM = MD. Докажите, что ∠PMB = ∠QMB.
Дан правильный 2n-угольник A1A1...A2n с центром O, причём n ≥ 5. Диагонали A2An–1 и A3An пересекаются в точке F, а A1A3 и A2A2n–2 – в точке P.
Страница: 1 [Всего задач: 2]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке