ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону. В клетках таблицы 15×15 изначально записаны нули. За один ход разрешается выбрать любой её столбец или любую строку, стереть записанные там числа и записать туда все числа от 1 до 15 в произвольном порядке – по одному в каждую клетку. Какую максимальную сумму чисел в таблице можно получить такими ходами? У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей. Последовательность (an) задана условиями a1= 1000000 , an+1=n[ В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и a1 > a2 > ... > an). При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]
В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и a1 > a2 > ... > an). При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.
В клетках таблицы 15×15 изначально записаны нули. За один ход разрешается выбрать любой её столбец или любую строку, стереть записанные там числа и записать туда все числа от 1 до 15 в произвольном порядке – по одному в каждую клетку. Какую максимальную сумму чисел в таблице можно получить такими ходами?
Последовательность (an) задана условиями a1= 1000000 , an+1=n[
300 бюрократов разбиты на три комиссии по 100 человек. Каждые два бюрократа либо знакомы друг с другом, либо незнакомы. Докажите, что найдутся два таких бюрократа из разных комиссий, что в третьей комиссии есть либо 17 человек, знакомых с обоими, либо 17 человек, незнакомых с обоими.
Пусть a1, a2, ..., a10 – натуральные числа, a1 < a2 < ... < a10. Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке