ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||
Страница: << 1 2 3 4 [Всего задач: 17]
Эллипс $\Gamma_1$ c фокусами в серединах сторон $AB$ и $AC$ треугольника $ABC$ проходит через вершину $A$, а эллипс $\Gamma_2$ c фокусами в серединах сторон $AC$ и $BC$ проходит через вершину $C$. Докажите, что точки пересечения этих эллипсов и ортоцентр треугольника $ABC$ лежат на одной прямой.
В треугольнике $ABC$ проведены биссектрисы $AA_1$, $BB_1$ и $CC_1$. Отрезки $BB_1$ и $A_1C_1$ пересекаются в точке $D$. Точка $E$ – проекция точки $D$ на сторону $AC$. Точки $P$ и $Q$ лежат на сторонах $AB$ и $BC$ соответственно так, что $EP=PD$, $EQ=QD$. Докажите, что $\angle PDB_1=\angle EDQ$.
Страница: << 1 2 3 4 [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке