ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Гарманова Т.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 67037

Темы:   [ Арифметика остатков (прочее) ]
[ Многочлены (прочее) ]
Сложность: 3
Классы: 9,10,11

Таня последовательно выписывала числа вида ${n^7-1}$ для натуральных чисел $n=2,3,\ldots$ и заметила, что при $n=8$ полученное число делится на 337. А при каком наименьшем $n\gt 1$ она получит число, делящееся на 2022?
Прислать комментарий     Решение


Задача 67201

Тема:   [ Ограниченность, монотонность ]
Сложность: 4
Классы: 10,11

Дана строго возрастающая функция $f\colon \mathbb{N}_0\to \mathbb{N}_0$ (где $\mathbb{N}_0$ — множество целых неотрицательных чисел), которая удовлетворяет соотношению $f(n+f(m))=f(n)+m+1$ для любых $m,n\in \mathbb{N}_0$. Найдите все значения, которые может принимать $f(2023)$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .