ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Сендеров В.А.

Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 90]      



Задача 109828

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Деление с остатком ]
Сложность: 5-
Классы: 7,8,9,10

Натуральные числа x и y таковы, что  2x² – 1 = y15.  Докажите, что если  x > 1,  то x делится на 5.

Прислать комментарий     Решение

Задача 110197

Темы:   [ Уравнения в целых числах ]
[ Неравенство Коши ]
[ Монотонность и ограниченность ]
Сложность: 5-
Классы: 8,9,10

Найдите все такие пары  (x, y)  натуральных чисел, что  x + y = an,  x² + y² = am  для некоторых натуральных a, n, m.

Прислать комментарий     Решение

Задача 111863

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 5-
Классы: 8,9,10,11

Дано конечное множество простых чисел P. Докажите, что найдётся такое натуральное число x , что оно представляется в виде  x = ap + bp  (с натуральными a, b) при всех   pP   и не представляется в таком виде для любого простого pP.

Прислать комментарий     Решение

Задача 109602

Темы:   [ Тригонометрические уравнения ]
[ Тригонометрические неравенства ]
[ Монотонность и ограниченность ]
[ Монотонность, ограниченность ]
Сложность: 5
Классы: 9,10,11

Решите уравнение cos(cos(cos(cos x)))= sin(sin(sin(sin x))) .
Прислать комментарий     Решение


Задача 109625

Темы:   [ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 5
Классы: 8,9,10

Найдите все такие натуральные n, что при некоторых взаимно простых x и y и натуральном  k > 1,  выполняется равенство  3n = xk + yk.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 90]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .