|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Доказать, что не существует тетраэдра, в котором каждое ребро являлось бы стороной плоского тупого угла. а) В бесконечной последовательности бумажных прямоугольников площадь n-го прямоугольника равна n². Обязательно ли можно покрыть ими плоскость? Наложения допускаются. б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа N найдутся квадраты суммарной площади больше N? |
Страница: << 1 2 [Всего задач: 6]
Страница: << 1 2 [Всего задач: 6] |
|||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|