|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Окружность, проходящая через точку C, пересекает стороны BC и AC треугольника ABC в точках A1 и B1, а его описанную окружность в точке M. Докажите, что б) На лучах AC и BC отложены отрезки AA1 и BB1, равные полупериметру треугольника ABC. M — такая точка его описанной окружности, что CM || A1B1. Докажите, что Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 98 км. На следующий день он отправился обратно со скоростью на 7 км/ч больше прежней. По дороге он сделал остановку на 7 ч. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч. |
Страница: 1 2 >> [Всего задач: 6]
Может ли вершина параболы у = 4х² – 4(а + 1)х + а лежать во второй координатной четверти при каком-нибудь значении а?
Определите, на какую наибольшую натуральную степень числа 2007 делится 2007!
В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?
а) три отрезка имеют равные длины? б) длины двух отрезков равны между собой и не равны длине третьего?
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|