|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть α, β и γ - углы треугольника ABC. Докажите, что а) sin( б) tg( в) cos( В картинной галерее, имеющей форму N-угольника, расположено M люстр, которые мы будем считать точечными источниками света. Точка стены галереи называется освещенной, если из нее видна хотя бы одна из люстр. Неосвещенным участком будем называть максимальное связное множество точек стены галереи, ни одна из которых не освещена (участок может содержать углы галереи). Напишите программу, определяющую все неосвещенные участки. Входные данные Первая строка входного файла содержит два целых числа N и M (1 ≤ N, M ≤ 30). В каждой из следующих N строк записаны координаты очередного угла галереи. Углы перечислены в порядке обхода стены по часовой стрелке. Далее идут M строк, каждая из которых содержит координаты очередной из люстр. Все координаты являются вещественными числами и разделяются пробелом. Выходные данные В первую строку выходного файла выведите количество неосвещенных участков S. Каждая из следующих S строк должна содержать описание очередного из участков в виде тройки чисел, разделенных пробелом. Первые два числа определяют координаты начальной точки участка, третье – его длину. (Участок должен продолжаться на указанную длину в направлении обхода стены по часовой стрелке. Никакие два участка не должны иметь общих точек.) Числа, определяющие участок, должны быть выведены не менее чем с 3 верными значащими цифрами. Пример входного файла 5 1 0 0 0 5 4 5 2 3 5 0 3.0 1.0 Пример выходного файла 1 1 5 5.82843 |
Страница: << 1 2 [Всего задач: 8]
На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди
пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.
В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)
Страница: << 1 2 [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|