ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Остров Толпыго имеет форму многоугольника. На нём расположено несколько стран, каждая из которых имеет форму треугольника, причём каждые две граничащие страны имеют целую общую сторону (т.е. вершина одного треугольника не лежит на стороне другого). Доказать, что карту этого острова можно так раскрасить тремя красками, чтобы каждая страна была закрашена одним цветом и любые две соседние страны были закрашениы в разные цвета.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



Задача 60284  (#01.011)

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3-
Классы: 8,9,10

Докажите тождество: 13 + 23 +...+ n3 = (1 + 2 +...+ n)2.

Прислать комментарий     Решение

Задача 60285  (#01.012)

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3-
Классы: 8,9,10

Докажите тождество: 1 . 2 . 3 + 2 . 3 . 4 +...+ n(n + 1)(n + 2) = $\displaystyle {\textstyle\frac{1}{4}}$n(n + 1)(n + 2)(n + 3).

Прислать комментарий     Решение

Задача 60286  (#01.013)

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9,10

Докажите тождество: $ {\dfrac{1^2}{1\cdot3}}$ + $ {\dfrac{2^2}{3\cdot5}}$ +...+ $ {\dfrac{n^2}{(2n-1)(2n+1)}}$ = $ {\dfrac{n(n+1)}{2(2n+1)}}$.

Прислать комментарий     Решение

Задача 102829  (#01.014)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 7,8

Найдите сумму   1·1! + 2·2! + 3·3! + … + n·n!.

Прислать комментарий     Решение

Задача 60288  (#01.015)

Тема:   [ Системы счисления (прочее) ]
Сложность: 3-
Классы: 8,9,10

Факториальная система счисления. Докажите, что каждое натуральное число n может быть единственным образом представлено в виде

n = a1 . 1! + a2 . 2! + a3 . 3! +...,

где 0 $ \leqslant$ a1 $ \leqslant$ 1, 0 $ \leqslant$ a2 $ \leqslant$ 2, 0 $ \leqslant$ a3 $ \leqslant$ 3...

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .