ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Дидин М.

В стране рыцарей (всегда говорят правду) и лжецов (всегда лгут) за круглым столом сидят в вершинах правильного десятиугольника 10 человек, среди которых есть лжецы. Путешественник может встать куда-то и спросить сидящих: "Каково расстояние от меня до ближайшего лжеца из вас?" После этого каждый отвечает ему. Какое минимальное количество вопросов должен задать путешественник так, чтобы гарантированно узнать, кто за столом лжецы? (Посторонних рядом нет, на стол вставать нельзя. Людей считайте точками. Все, включая путешественника, могут точно измерить любое расстояние.)

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 116841  (#7.1)

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 2+
Классы: 6,7

В записи   ¼  ¼  ¼  ¼   расставьте знаки действий и, если нужно, скобки так, чтобы значение получившегося выражения равнялось 2.

Прислать комментарий     Решение

Задача 116842  (#7.2)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 6,7

Собираясь в школу, Миша нашёл под подушкой, под диваном, на столе и под столом все необходимое: тетрадь, шпаргалку, плеер и кроссовки. Под столом он нашёл не тетрадь и не плеер. Мишины шпаргалки никогда не валяются на полу. Плеера не оказалось ни на столе, ни под диваном. Что где лежало, если в каждом из мест находился только один предмет?

Прислать комментарий     Решение

Задача 116843  (#7.3)

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2
Классы: 6,7

Можно ли сложить какой-нибудь квадрат из трёхклеточных уголков (см. рис.)?

Прислать комментарий     Решение

Задача 116844  (#7.4)

Темы:   [ Задачи на проценты и отношения ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 6,7

Малыш подарил Карлсону 111 конфет. Сколько-то из них они тут же съели вместе, 45% оставшихся конфет пошли Карлсону на обед, а треть конфет, оставшихся после обеда, нашла во время уборки фрёкен Бок. Сколько конфет она нашла?

Прислать комментарий     Решение

Задача 116845  (#7.5)

Темы:   [ Процессы и операции ]
[ Шахматная раскраска ]
[ Инварианты ]
Сложность: 3
Классы: 6,7

В клетках квадрата 3×3 расставлены числа (рис. слева). Разрешается к числам, стоящим в двух соседних клетках, одновременно прибавлять одно и то же число, не обязательно положительное. Можно ли в какой-то момент получить такой квадрат с числами, как на рисунке справа? (Клетки считаются соседними, если имеют общую сторону.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .