ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дед звал внука к себе в деревню:
  – Вот посмотришь, какой я необыкновенный сад посадил! У меня там растёт четыре груши, а ещё есть яблони, причём они посажены так, что на расстоянии 10 метров от каждой яблони растёт ровно две груши.
  – Ну и что тут интересного, – ответил внук. – У тебя всего две яблони.
 – А вот и не угадал, – улыбнулся дед. – Яблонь у меня в саду больше, чем груш.
Нарисуйте, как могли расти яблони и груши в саду у деда. Постарайтесь разместить на рисунке как можно больше яблонь, не нарушая условий.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 56773

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

На каждой стороне параллелограмма взято по точке. Площадь четырехугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырехугольника параллельна стороне параллелограмма.
Прислать комментарий     Решение


Задача 56774

Тема:   [ Площадь четырехугольника ]
Сложность: 5
Классы: 9

Точки K и M — середины сторон AB и CD выпуклого четырехугольника ABCD, точки L и N расположены на сторонах BC и AD так, что KLMN — прямоугольник. Докажите, что площадь четырехугольника ABCD вдвое больше площади прямоугольника KLMN.
Прислать комментарий     Решение


Задача 56775

Тема:   [ Площадь четырехугольника ]
Сложность: 6
Классы: 9

Квадрат разделен на четыре части двумя перпендикулярными прямыми, точка пересечения которых лежит внутри его. Докажите, что если площади трех из этих частей равны, то равны и площади всех четырех частей.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .