|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике $ABC$ $\angle C=90^{\circ}$, $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. На отрезках $AB_0$ и $BA_0$ во внешнюю сторону построены как на основаниях равносторонние треугольники с вершинами $C_1$, $C_2$. Найдите угол $C_0C_1C_2$. |
Страница: << 1 2 [Всего задач: 6]
Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).
Страница: << 1 2 [Всего задач: 6] |
||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|