ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите, что система уравнений

    x1x2 = a,
    x3x4 = b,
    x1 + x2 + x3 + x4 = 1

имеет хотя бы одно положительное решение тогда и только тогда, когда  |a| + |b| < 1.

Вниз   Решение


Автор: Анджанс А.

Число рёбер многогранника равно 100.
  а) Какое наибольшее число рёбер может пересечь плоскость, не проходящая через его вершины, если многогранник выпуклый?
  б) Докажите, что для невыпуклого многогранника это число может равняться 96,
  в) но не может равняться 100.

ВверхВниз   Решение


Два игрока ходят по очереди. Перед началом игры у них есть поровну горошин. Ход состоит в передаче сопернику любого числа горошин. Не разрешается передавать такое количество горошин, которое до этого уже кто-то в этой партии передавал. Ноль горошин тоже передавать нельзя. Тот, кто не может сделать очередной ход по правилам, — считается проигравшим.
Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр?
Рассмотрите случаи:
а) У каждого по две горошины;
б) У каждого по три горошины;
в) У каждого по десять горошин;
г) Общий случай: у каждого по N горошин.

ВверхВниз   Решение


Шеренга солдат-новобранцев стояла лицом к сержанту. По команде «налево» некоторые повернулись налево, остальные – направо. Оказалось, что в затылок соседу смотрит в шесть раз больше солдат, чем в лицо. Затем по команде «кругом» все развернулись в противоположную сторону. Теперь в затылок соседу стали смотреть в семь раз больше солдат, чем в лицо. Сколько солдат в шеренге?

ВверхВниз   Решение


Найти все решения системы уравнений   x(1 – 2n) + y(1 – 2n–1) + z(1 – 2n–2) = 0,   где  n = 1, 2, 3, 4, ...

ВверхВниз   Решение


Двое играют в следующую игру: имеется две кучи конфет. Играющие делают ход по очереди. Ход состоит в том, что играющий съедает одну из куч, а другую делит на две (равные или неравные) части. Если он не может разделить кучу, так как там всего одна конфета, то он её съедает и выигрывает. Вначале в кучах было 33 и 35 конфет. Кто выиграет, начинающий или его партнер, и как для этого надо играть?

ВверхВниз   Решение


Имеется две кучки спичек: а) 101 спичка и 201 спичка; б) 100 спичек и 201 спичка. За ход разрешается уменьшить количество спичек в одной из кучек на число, являющееся делителем количества спичек в другой кучке. Выигрывает тот, после чьего хода спичек не остается.

ВверхВниз   Решение


а) На столе лежат 111 спичек. Маша и Даша по очереди берут со стола по несколько спичек, но не больше десяти за один раз. Выигрывает тот, кто возьмет последнюю спичку. Кто победит при правильной игре?
б) На полу лежат три кучки - из 3, 4 и 5 спичек. Теперь Маша и Даша за один раз могут взять любое количество спичек, но только из одной кучки. Кто выиграет на этот раз?

ВверхВниз   Решение


В коробке лежит 300 спичек. За ход разрешается взять из коробка не более половины имеющихся в нем спичек. Проигрывает тот, кто не может сделать ход.

ВверхВниз   Решение


Решить систему уравнений с n неизвестными  

ВверхВниз   Решение


Решить систему уравнений:
   x1 + 12x2 = 15,
   x1 – 12x2 + 11x3 = 2,
   x1 – 11x3 + 10x4 = 2,
   x1 – 10x4 + 9x5 = 2,
   x1 – 9x5 + 8x6 = 2,
   x1 – 8x6 + 7x7 = 2,
   x1 – 7x7 + 6x8 = 2,
   x1 – 6x8 + 5x9 = 2,
   x1 – 5x9 + 4x10 = 2,
   x1 – 4x10 + 3x11 = 2,
   x1 – 3x11 + 2x12 = 2,
   x1 – 2x12 = 2.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 65650

Темы:   [ Выпуклые тела ]
[ Призма (прочее) ]
[ Проектирование помогает решить задачу ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 9,10,11

Автор: Мухин Д.Г.

В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая?

Прислать комментарий     Решение

Задача 64863

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Примеры и контрпримеры. Конструкции ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 10,11

Верно ли, что существуют выпуклые многогранники с любым количеством диагоналей? (Диагональю называется отрезок, соединяющий две вершины многогранника и не лежащий на его поверхности.)

Прислать комментарий     Решение

Задача 107728

Темы:   [ Вписанные многогранники ]
[ Выпуклые тела ]
[ Перестройки ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Многогранник вписан в сферу. Может ли оказаться, что этот многогранник невыпуклый? (Многогранник вписан в сферу, если все концы его рёбер лежат на сфере.)
Прислать комментарий     Решение


Задача 107833

Темы:   [ Ортогональная проекция (прочее) ]
[ Выпуклые тела ]
[ Расстояние между двумя точками. Уравнение сферы ]
Сложность: 4+
Классы: 10,11

Существует ли выпуклое тело, отличное от шара, ортогональные проекции которого на некоторые три попарно перпендикулярные плоскости являются кругами?
Прислать комментарий     Решение


Задача 110756

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Примеры и контрпримеры. Конструкции ]
[ Параллельный перенос ]
[ Правильные многогранники (прочее) ]
Сложность: 5-
Классы: 10,11

Каждое ребро выпуклого многогранника параллельно перенесли на некоторый вектор так, что ребра образовали каркас нового выпуклого многогранника. Обязательно ли он равен исходному?
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .