ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 73549

Темы:   [ Раскраски ]
[ Описанные многогранники ]
[ Выпуклые тела ]
[ Касательные к сферам ]
Сложность: 5-
Классы: 10,11

У выпуклого белого многогранника некоторые грани покрашены чёрной краской так, что никакие две чёрные грани не имеют общего ребра. Докажите, что если а) чёрных граней больше половины; б) сумма площадей чёрных граней больше суммы площадей белых граней, то в этот многогранник нельзя вписать шар.
Прислать комментарий     Решение


Задача 107769

Темы:   [ Гомотетия помогает решить задачу ]
[ Параллельный перенос ]
[ Выпуклые тела ]
[ Принцип Дирихле (площадь и объем) ]
[ Объем помогает решить задачу ]
[ Многогранники и многоугольники (прочее) ]
Сложность: 6-
Классы: 10,11

Из выпуклого многогранника с 9 вершинами, одна из которых A, параллельными переносами, переводящими A в каждую из остальных вершин, образуется 8 равных ему многогранников. Докажите, что хотя бы два из этих 8 многогранников пересекаются (по внутренним точкам).
Прислать комментарий     Решение


Задача 73654

Темы:   [ Проектирование помогает решить задачу ]
[ Площадь и ортогональная проекция ]
[ Выпуклые тела ]
[ Многогранники и многоугольники (прочее) ]
Сложность: 6
Классы: 10,11

Если на каждой грани выпуклого многогранника выбрать по точке и провести из этой точки направленный перпендикулярно соответствующей грани во внешнюю сторону вектор, длина которого равна площади этой грани, то сумма всех таких векторов окажется равна нулю. Докажите это.
Прислать комментарий     Решение


Задача 73610

Темы:   [ Обходы многогранников ]
[ Параллельное проектирование (прочее) ]
[ Выпуклые тела ]
[ Индукция в геометрии ]
[ Процессы и операции ]
Сложность: 6+
Классы: 10,11

а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это. (Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.)

б) Для любых двух вершин A и B любого выпуклого многогранника существуют три ломаные, каждая из которых идёт по рёбрам многогранника из А в В и никакие две не проходят по одному ребру. Докажите это.

в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его вершин А и В существует соединяющая эти две вершины ломаная, идущая по оставшимся рёбрам. Докажите это.

г) Докажите, что в задаче б) можно выбрать три ломаные, никакие две из которых не имеют общих вершин, за исключением точек А и В.
Прислать комментарий     Решение


Задача 79344

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Четность и нечетность ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Выпуклые тела ]
[ Правило произведения ]
Сложность: 3
Классы: 10,11

В пространстве расположен выпуклый многогранник, все вершины которого находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет. (Целой называется точка, все три координаты которой – целые числа.) Доказать, что число вершин многогранника не превосходит восьми.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .