Страница:
<< 1 2
3 4 >> [Всего задач: 18]
|
|
Сложность: 5 Классы: 10,11
|
Можно ли расположить бесконечное число равных выпуклых
многогранников в слое, ограниченном двумя параллельными плоскостями, так чтобы
ни один многогранник нельзя было вынуть из слоя, не сдвигая остальных?
|
|
Сложность: 5+ Классы: 10,11
|
Число рёбер многогранника равно 100.
а) Какое наибольшее число рёбер может пересечь плоскость, не
проходящая через его вершины, если многогранник выпуклый?
б) Докажите, что для невыпуклого многогранника это число может
равняться 96,
в) но не может равняться 100.
|
|
Сложность: 5+ Классы: 10,11
|
Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).
|
|
Сложность: 6- Классы: 10,11
|
У выпуклого многогранника
2
n граней (
n 3
), и все грани
являются треугольниками. Какое наибольшее число вершин, в которых
сходится ровно 3 ребра, может быть у такого многогранника?
|
|
Сложность: 4+ Классы: 10,11
|
Каждая грань выпуклого многогранника – многоугольник с чётным числом
сторон.
Обязательно ли его рёбра можно раскрасить в два цвета так, чтобы у каждой грани было поровну рёбер разных цветов?
Страница:
<< 1 2
3 4 >> [Всего задач: 18]