ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На каждом из двух рукавов реки за километр до их слияния стоит по пристани, а ещё одна пристань стоит в 2 километрах после слияния (см. рисунок).

Лодка добралась от одной из пристаней до другой (неизвестно, какой) за 30 минут, от другой до третьей за 18 минут. За сколько минут она может добраться от третьей пристани до первой? (Скорость течения реки постоянна и одинакова во всех её частях. Собственная скорость лодки также постоянна.)

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 209]      



Задача 30291  (#04.011)

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

Все костяшки домино выложили в цепь. На одном конце оказалось 5 очков. Сколько очков на другом конце?

Прислать комментарий     Решение

Задача 60638  (#04.012)

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 7,8,9

Можно ли множество всех натуральных чисел, больших 1, разбить на два непустых подмножества так, чтобы для каждых двух чисел a и b из одного множества число  ab – 1  принадлежало другому?

Прислать комментарий     Решение

Задача 58172  (#04.013)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Правильные многоугольники ]
Сложность: 4-
Классы: 8,9,10

Дан выпуклый 2n-угольник A1...A2n. Внутри него взята точка P, не лежащая ни на одной из диагоналей.
Докажите, что точка P принадлежит чётному числу треугольников с вершинами в точках A1,..., A2n.

Прислать комментарий     Решение

Задача 35075  (#04.014)

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 7,8

Можно ли так расставить знаки "+" или "–" между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю?

Прислать комментарий     Решение

Задача 30305  (#04.015)

Темы:   [ Четность и нечетность ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 6,7,8

К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.
Докажите, что хотя бы одна цифра полученной суммы чётна.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 209]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .