ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 85]      



Задача 60859  (#05.021)

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10

Найдите первые 17 знаков в десятичной записи у чисел:
а) $ {\dfrac{1}{\sqrt1+\sqrt2}}$ + $ {\dfrac{1}{\sqrt2+\sqrt3}}$ +...+ $ {\dfrac{1}{\sqrt{99}+\sqrt{100}}}$;
б) $ {\dfrac{\sqrt2+\sqrt{3/2}}{\sqrt2+\sqrt{2+\sqrt3}}}$ + $ {\dfrac{\sqrt2-\sqrt{3/2}}{\sqrt2-\sqrt{2-\sqrt3}}}$;
в) $ \sqrt{\vert 40\sqrt2-57\vert}$ - $ \sqrt{40\sqrt2+57}$.

Прислать комментарий     Решение

Задача 60860  (#05.022)

Тема:   [ Доказательство тождеств. Преобразования выражений ]
Сложность: 4
Классы: 8,9,10

Вычислите:
а) $ \sqrt[3]{20+\sqrt{392}}$ + $ \sqrt[3]{20-\sqrt{392}}$;
б) $ \sqrt[3]{5\sqrt{2}+7}$ - $ \sqrt[3]{5\sqrt{2}-7}$;
в) $ \sqrt{x+6\sqrt{x-9}}$ + $ \sqrt{x-6\sqrt{x-9}}$    (9 $ \leqslant$ x $ \leqslant$ 18).

Прислать комментарий     Решение

Задача 60861  (#05.023)

 [Задача Бхаскары]
Тема:   [ Доказательство тождеств. Преобразования выражений ]
Сложность: 3+
Классы: 8,9,10

Задача Бхаскары. Упростите выражение

$\displaystyle \sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}$.


Прислать комментарий     Решение

Задача 60862  (#05.024)

Тема:   [ Доказательство тождеств. Преобразования выражений ]
Сложность: 3
Классы: 8,9,10

Формула сложного радикала. Докажите равенство:

$\displaystyle \sqrt{a\pm\sqrt{b}}$ = $\displaystyle \sqrt{\frac{a+\sqrt{a^2-b}}{2}}$±$\displaystyle \sqrt{\frac{a-\sqrt{a^2-b}}{2}}$.


Прислать комментарий     Решение

Задача 60863  (#05.025)

Темы:   [ Рациональные и иррациональные числа ]
[ Квадратные корни (прочее) ]
Сложность: 7
Классы: 10,11

Докажите, что число $ \sqrt{2}$ + $ \sqrt{3}$ + $ \sqrt{5}$ + $ \sqrt{7}$ + $ \sqrt{11}$ + $ \sqrt{13}$ + $ \sqrt{17}$ иррационально.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .